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Abstract 

Understanding the etiology and evolution 

of the vulnerable coronary plaque is important 

for the early detection, treatment, and prevention 

of coronary artery disease. Intravascular optical 

coherence tomography (OCT) enables imaging of 

the coronary arteries in vivo with sufficient 

resolution to accurately differentiate arterial 

pathology, however, the clinical utility of this 

technology has been limited due to slow image 

acquisition rates. The development of high-speed 

Fourier-domain OCT techniques, including 

optical frequency-domain imaging, enables 

comprehensive microstructural imaging of long 

coronary artery segments. Other OCT 

advancements, including polarization sensitive 

OCT provides complementary birefringence 

information that is related to tissue composition. 

Together with new image processing, acquisition, 

and display techniques, these advances have 

enhanced the usability and utility of 

intracoronary OCT, bringing it closer to 

becoming a mainstream imaging modality in 

interventional cardiology.  
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I.  INTRODUCTION  
`ACUTE myocardial infarction (AMI), 

most frequently caused by the disruption of a 

vulnerable atherosclerotic plaque, is the leading 

cause of death in the western world [10]. Thin-cap 

fibroatheromas (TCFAs), the predominant form of 

vulnerable plaques resulting in sudden cardiac death 

[11], [12], have been defined as plaques with a large 
lipid pool, a thin fibrous cap (<65 μm), and activated 

macrophages near or within the fibrous cap [13]–

[15]. The rupture of a TCFA, which may be 

precipitated by biomechanical stresses [16], [17], 

causes the bloodstream to be exposed to 

procoagulant factors, forming a nidus for thrombus. 

In some instances, the thrombus can impede blood 

flow to downstream myocardium, trigging an acute 

coronary event [18]. In addition to TCFA, coronary 

artery thrombosis has also be been attributed to 

eroded plaques and superficial calcific nodules [6], 

[19], [20]. Regardless of the underlying pathologic 
substrate, we do not understand which plaques will 

give rise to coronary thrombosis in any given  

 

patient. For this reason, current vulnerable plaque 

research is focused on the detection and study of the 

natural history of these high-risk lesions. Data 

gained from this research will provide clinicians 

with the information and tools required to guide 

pharmacologic and/or interventional management. 

Patients presenting with stenotic coronary lesions 

may be treated with stent implantation during 

percutaneous coronary intervention (PCI). The role 

of stent placement is to restore and maintain blood 

flow through the artery. While effective for this 
purpose, in-stent restenosis, caused by aggressive 

neointimal hyperplasia, is a significant problem with 

bare metal stents (BMS), leading to the need for a 

repeat PCI in a substantial number of patients. Drug-

eluting stents (DES), coated with an agent designed 

to attenuate neointimal growth, reduce this problem, 

but may result in delayed endothelial healing and 

rare cases of late stent thrombosis [21]–[24] The 

potential risk of stent thrombosis in patients with 

DES mandates long-term administration of 

anticlotting drugs, which are expensive and have 
their own bleeding-associated complications. Given 

these difficulties encountered with coronary stenting, 

there is a need for a tool to evaluate the stent healing 

process, which may be used to tailor antiplatelet 

regimen durations on an individual patient basis. A 

number of imaging modalities have been 

investigated for studying vulnerable plaques in the 

hope of uncovering new knowledge regarding this 

disease process [25]. Both conventional and 

experimental intravascular imaging modalities 

include intravascular ultrasound (IVUS) [26]–[30], 

magnetic resonance imaging (MRI) [31]–[33], 
optical coherence tomography (OCT) [34], [35], 

angioscopy [6], [36]–[40], thermography [41], [42] 

and near-infrared [43], fluorescence [44], [45], and 

Raman spectroscopy [9], [46], [47]. Of these, OCT 

is the only imaging modality with sufficient 

resolution to visualize the majority of the pathologic 

features currently associated with the vulnerable 

plaque [4]. OCT has been utilized as an investigative 

imaging tool for the assessment of coronary artery 

pathology for a number of years [48], and has 

additionally been effective in evaluating the effects 
of coronary stenting [49]. Early OCT imaging 

studies were performed using systems based on 

timedomain OCT (TD-OCT) technology [5], [7], 

[35], [48]–[53]. One difficulty with conducting 

coronary OCT in vivo is the need to remove blood 

from the imaging field in order to clearly visualize 

the artery wall. Methods employed to displace blood 
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during OCT imaging include flushing the artery with 

saline both with and without proximal balloon 

occlusion. The prolonged balloon occlusion or flush 

times necessary for TD-OCT increased the risk of 

myocardial ischemia during the procedure, and 

together with the increased procedural complexity, 

may have limited the widespread clinical adoption of 
this technology. With extensive training expert users 

were able to mitigate these risks while acquiring 

pullbacks of up to 3–5 cm in length [54], [55]. As a 

result, thousands of coronary patients have been 

imaged with OCT at several hundred sites around 

the world with commercially available TD-OCT 

systems and over 200 studies have been published, 

mostly in clinical journals. With the advent of 

second generation Fourier-domain OCT (FD-OCT), 

which enables high-quality imaging at speeds up to 

100× that of TD-OCT, 3-D imaging of long 

coronary segments during a brief transparent media 
flush is now possible. This paper addresses the 

imaging principles of OCT that make it an ideal tool 

for interrogating coronary microstructure, in addition 

to the recent developments in the technology, which 

have increased the likelihood that this imaging 

modality will be widely adopted in cardiology. 

 

II. TIME-DOMAIN OPTICAL COHERENCE 
Intravascular OCT is a structural imaging 

modality that is similar in principle to IVUS. With 

OCT, the echo time delay of the incident light, rather 

than acoustic waves, is measured using low-

coherence interferometry [35]. In TD-OCT systems, 

a broadband light source is split into two arms, a 

reference arm and a sample arm. The reference arm 

light typically illuminates a reflector and the sample 

arm light is directed toward the coronary wall. Light 

returned from both arms is then recombined and 

detected. When the optical path length traveled by 

the light in each arm is within the coherence length 
of the source, the cross correlation of the two 

electromagnetic fields results in an interference 

pattern, the amplitude of which may be mapped to a 

pixel intensity value. By scanning the optical delay 

of the reference arm, interference fringes from 

discrete locations within the tissue are obtained and 

may be assembled to form profiles of reflectivity as 

a function of depth or A-lines. 2-D and 3-D OCT 

images are obtained by scanning the sample arm 

beam across the sample and recording A-lines at 

each scan position. OCT systems are based on fiber-

optic technology, and therefore, are highly 
conducive to catheter-based imaging required for 

many clinical applications [56]. OCT imaging of the 

coronary artery  

was first demonstrated in early in vitro 

studies, where investigators described the 

visualization of coronary microstructure including 

the adventitia, media, and intima [48], [50] Image 

criteria for the differentiation of coronary artery 

microstructures have been developed and validated 

in histopathologic correlative imaging studies, 

conducted on autopsy specimens ex vivo (see Table 

I). The classification criteria that are currently 

utilized to interpret lesion morphology in the clinical 

setting were developed and prospectively tested by 

Yabushita et al. [7]. In this study, 357 OCT-

histology correlated images of atherosclerotic 
lesions were obtained from 90 cadavers. The 

investigators found that fibrous plaques could be 

identified by homogeneous signal-rich regions, 

fibrocalcific plaques by signal-poor regions with 

sharp borders, and lipid-rich plaques by signal-poor 

regions with diffuse borders (see Fig. 1). The 

sensitivity and specificity for plaque characterization 

based on these criteria were reported to range from 

71% to 79% and 97% to 98% for fibrous plaques, 

95% to 96% and 97% for fibrocalcific plaques, and 

90% to 94% and 90% to 92% for lipid-rich plaques 

[7] In addition to the discrimination of plaque type, 
the capability of OCT to identify arterial 

macrophages has also been reported [2]. This study 

showed that macrophage density measured by OCT 

was correlated to immunohistochemical CD68 

staining of macrophages from corresponding 

histopathologic slides (r = 0.84,P <0.0001) [2]. 

Given that the presence of activated macrophages in 

the atherosclerotic plaque are thought to increase 

plaque vulnerability and probability of rupture [57]–

[59]. The knowledge of macrophage distribution and 

density that may be determined by intracoronary 
OCT, may prove useful for evaluating arterial 

inflammation and plaque vulnerability. In 1999, the 

first in vivo intravascular OCT study was performed 

in the abdominal aorta of New Zealand white rabbits 

[51]. Using a 2.9 Fr OCT catheter in conjunction 

with a nonocclusive saline flush, the normal arterial 

wall microstructure, including the media and 

adventitia, were identified [51]. Following this initial 

demonstration, in vivo OCT imaging of coronary 

arteries was demonstrated in five swine [60]. The 

study revealed that intravascular OCT images 

provided superior resolution when compared to 
IVUS images obtained from the same locations, and 

enabled the visualization of features, such as the 

intima, including intimal flaps and defects, 

disruptions in the media, and stent strut apposition 

that could not be identified by IVUS [60] Based on 

the ability of OCT to discriminate between various 

intracoronary plaque microstructures and the 

potential of this imaging modality to have significant 

clinical impact, the first intravascular clinical studies 

with TD-OCT were published in 2002, 

demonstrating the safety and feasibility of this 
technique [5], [7], [52], [53]. Intracoronary OCT 

imaging in living patients enabled the visualization 

of coronary artery walls with unprecedented 

resolution. As in prior animal studies, in vivo OCT 

in the clinical setting was found to provide 

additional, more detailed structural information 

when compared to corresponding images obtained 
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with IVUS [5]. In the years, since this initial 

demonstration, OCT has been used extensively by a 

number of investigators in the clinical realm for 

assessing coronary plaque features [61]–[65], stent 

placement [49], [66], [67], apposition [49], [68]–

[70], stent strut coverage [71]–[75], and thrombus 

[76] While early studies demonstrated a niche for 
TD-OCT during PCI, the clinical utility of the 

technology was hampered by relatively low-image 

acquisition rates (2–4 kHz, A-line rates), which is 

because of the need for mechanical actuation of the 

reference arm, and as a consequence of the inverse 

relationship between TD-OCT imaging speed and 

signal-to-noise ratio. The relatively slow image 

acquisition rates of TD-OCT was problematic as 

flushing blood from the field of view was the only 

practical solution to obtaining clear images of the 

artery wall and the duration of a bolus of saline 

within the coronary artery was limited to 
approximately 2 s. The recognition that the 

combination of a substantial increase in acquisition 

speed with a short nonocclusive flush could solve 

the blood problem and enable screening of long 

coronary segments [77], was the key advance that 

has taken intracoronary OCT to the next level 

required for widespread clinical adoption. 

 

III. OPTICAL FREQUENCY DOMAIN IMAGING  
FD-OCTwas the critical technical advance 

that enabled imaging at sufficient speeds for 

coronary screening during a brief, nonocclusive 

flush. One form of FD-OCT, optical 

frequencydomain imaging (OFDI) [78] also called 

swept-source OCT (SS-OCT) [79], is the particular 

implementation of FD-OCT, used in most state of 

the art intracoronary OCT systems. With OFDI, the 

cross correlation of the optical signal returning from 

the sample and reference arms is sampled as a 

function of wavenumber rather than time. The 
spectrally resolved interference between the sample 

and reference arms is generated using a rapidly 

tuned wavelength-swept light source with a narrow 

instantaneous linewidth. A square-law 

photodectector is used to acquire the interference 

signal between the two arms, while the optical path-

length of the arms remain constant. Each frequency 

component of the interference signal is associated 

with a discrete depth location within the tissue. To 

generate an A-line, the Fourier transform of the 

interference fringe is calculated [78]. As in TD-

OCT, 2-D and 3-D OFDI images are acquired by 
scanning the light from the sample arm over the 

tissue. By detecting all depths of the A-line 

simultaneously during a single sweep of the light 

source, the detection sensitivity of OFDI is 

theoretically increased to a maximum of several 

orders of magnitude over TD-OCT [78], [79] This 

increased sensitivity may be leveraged to increase 

the imaging speed, enabling 3-D imaging of 

coronary artery segments during a short 

nonocclusive saline/radiocontrast purge. An 

additional advantage of OFDI technology is that it is 

possible to double the interferometric ranging depth 

by creating a very narrow instantaneous linewidth 

[80], [81] or by utilizing both the positive and 

negative differential delays [82]–[86]. This extended 

ranging depth can be achieved by shifting the 
frequency of the detector signal by a constant value, 

using an acoustooptical frequency shifter in the 

interferometer [86], or by acquiring both the in-

phase (real) and quadrature (imaginary) components 

of the interferometric signal [82]–[85]. The 

increased ranging depths (>7 mm) now obtained 

with OFDI allow imaging of even the largest human 

coronary arteries [77] Intracoronary OFDI was first 

demonstrated in swine studies in vivo in 2006, 

where comprehensive microscopy of long segments 

of coronary arteries was presented [77]. Forty-four 

in vivo swine intracoronary OFDI datasets were 
acquired at 108 frames per second with pullback 

speeds of 5 mm/s in segments up to 6 cm in length 

[77]. The imaging system used in this study had a 

source tuning range of 111 nm at a 54-kHz A-line 

rate corresponding to an image acquisition rate of 

108 frames per second [77]. The system utilized 

dual-balanced, polarization diverse detection, in 

addition to frequency shifting to remove the depth 

degeneracy providing a ranging depth of 7.3 mm 

[77], [86]. To highlight the volumetric capabilities of 

the imaging technology, the investigators performed 
angioplasty followed by stenting in the circumflex 

artery of one swine. The corresponding cross-

sectional OFDI images revealed clear stent strut 

visualization in addition to dissected intimia and 

media as a result of the balloon angioplasty [77]. By 

presenting the volumetric data in 3-D, a greater 

appreciation of the artery structure was realized. In 

2008, the same group translated this technology to 

the clinical setting and published the first 

demonstration of intracoronary OFDI in three human 

patients undergoing PCI [87]. Intracoronary OFDI 

datasets from three patients were presented, with 
imaging rates of 100 frames per second, and 

pullback speeds ranging from 5 to 20 mm/s [87] 

highlights the long arterial segments that can be 

successfully imaged with OFDI. The imaging core 

was translated at a speed of 20 mm/s with a frame 

rate of 100 frames per second (frame size: 1536 

axial points × 512 A-lines) resulting in a longitudinal 

imaging pitch of 200 μm. During image acquisition, 

the raw data was continuously streamed to a hard 

disk drive at a rate of 320 MB/s. The volumetric 

OFDI data of a right coronary artery was obtained 
during a single limited duration flush at 3 mL/s 

through a 7 Fr guide catheter. Using these 

parameters, a 7-cm longitudinal OFDI pullback of 

clear blood-free imaging was obtained in under 4 s. 

The single pullback shows a proximal BMS that was 

placed nine years prior to imaging, and a DES 

placed immediately prior to imaging. The wealth of 
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information obtained in the single pullback is 

highlighted by the volumetric renderings. These 

renderings were created offline by manually 

segmenting the images according to previously vali-

dated image criteria [1], [2], [7], [49] for the 

identification of the artery wall, lipid pools, calcific 

nodules, and stent struts. The macrophages 
highlighted in the renderings were automatically 

segmented with previously validated normalized 

image intensity metrics [2], together with the manual 

removal of outliers. Each of the segmented features 

was rendered in a different color according to the 

following scheme: red = artery wall, yellow = lipid 

pool, white = calcific nodule, blue = stent, grey = 

guide wire, and green = macrophage. The individual 

renderings were then recombined to form the final 3-

D image. Due to the manual segmentation process, 

the time required to construct the final volume 

renderings approached a couple of hours, however, 
with the development of automated and 

semiautomated image processing algorithms, these 

times may be considerable reduced. The volume 

renderings clearly show a high degree of tissue 

coverage on the BMS. In addition, the placement of 

the DES over a lipid-rich plaque can be visualized. 

Together with Figs. 2 and 3 highlights the high level 

of detail that can be observed with OFDI. Of specific 

interest in coronary intervention are issues relating 

to the use and effectiveness of stents, particularly 

stent placement including individual stent strut 
apposition, and tissue coverage over the struts. 

 

IV. POLARIZATION SENSITIVE OPTICAL 

COHERENCE TOMOGRAPHY 
Polarization sensitive OCT (PS-OCT), 

another embodiment of OCT, provides a measure of 

tissue birefringence by detecting polarization 
changes in the light returning from the tissue   

sample being imaged [88], [89] When light travels 

through tissues that exhibit form birefringence, 

orthogonal polarization components of the light will 

undergo phase retardation with respect to one 

another. This degree of phase retardation is 

dependent on the orientation of the polarization state 

with respect to the organized linear structures within 

the tissue, such as collagen fibers [90]. The detected 

birefringence increases in tissues containing highly 

organized linear structures. PS-OCT provides 
complementary image information to structural OCT 

images that may assist in the identification of the 

intravascular tissue composition, and may 

additionally provide insight to the mechanical 

stability of atherosclerotic plaques [91] PS-OCT has 

been demonstrated in histopathologic correlative 

studies conducted ex vivo to provide a quantitative 

measure of the collagen content, collagen fiber 

thickness, and smooth muscle content in 

atherosclerotic plaques [91]. In 2006, using a 

spectral-domain PS-OCT imaging system, Nadkarni 

et al. imaged aortic plaques and compared the PS-

OCT spatially averaged birefringence with the 

plaque collagen content and thickness, and smooth 

muscle cell content measured from histologic 

sections stained with picrosirius red and alpha-

smooth muscle actin, respectively [91]. This ex vivo 

study revealed a high-positive correlation between 

the PS-OCT measured birefringence and the total 
collagen content (r = 0.67, p = 0.001), the thick 

collagen fiber content (r = 0.76, p = 0.001), and the 

smooth muscle cell content (r = 0.74, p = 0.01) [91], 

providing compelling evidence that the measurement 

of artery birefringence may aid in determining the 

tissue composition of plaques, information that may 

be used to assess mechanical stability. In 

intravascular and other catheter-based PS-OCT 

systems, it is necessary to use optical fibers to 

transmit the imaging signal to the tissue of interest. 

Maintaining the polarization state of the transmitted 

light in fiber-based systems is difficult, even with 
polarization maintaining fibers, as the polarization 

state is susceptible to stresses acting on the fiber. 

One method for circumventing this issue is to 

modulate the polarization state of the source incident 

on the sample tissue between two perpendicular 

states in successive A-line pairs. This modulation 

ensures that the polarization state of the light source 

differs for at least one of a successive pair of A-

lines, from that of the linear birefringence axis of the 

sample. Each A-line pair is subsequently combined 

to form a single axial profile, using either Stokes 
vector [92] or Jones matrix [93] analysis. This 

method of fiber-based PS-OCT has been 

demonstrated in both spectraldomain PS-OCT [94]–

[96] and OFDI systems [97]. Recently however, a 

novel approach to PS-OCT unique to OFDI has been 

demonstrated that utilizes frequency multiplexing to 

enable illumination and detection of two polarization 

states simultaneously [98]. This new implementation 

of PS-OFDI obviates the need for modulating the 

polarization state of the source between successive 

A-lines. PS-OFDI with frequency multiplexing has 

been demonstrated in ex vivo studies through an 
intracoronary catheter at an A-line rate of 62 kHz 

[98]. Structural and a PS-OFDI image acquired from 

a human coronary artery in vivo. The PS-OFDI 

image adds additional detail regarding the structural 

integrity of the artery that can be inferred from the 

tissue birefringence strength map. 

 

We consider the following anycast field 

equations defined over an open bounded piece of 

network and /or feature space 
dR . They 

describe the dynamics of the mean anycast of each 

of p node populations. 
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We give an interpretation of the various parameters 

and functions that appear in (1),  is finite piece of 
nodes and/or feature space and is represented as an 

open bounded set of 
dR . The vector r  and r  

represent points in   . The function 

: (0,1)S R  is the normalized sigmoid function: 
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( ) (2)
1 z

S z
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

  

It describes the relation between the input rate iv  of 

population i  as a function of the packets potential, 

for example, [ ( )].i i i i iV v S V h    We note 

V  the p   dimensional vector 1( ,..., ).pV V The 

p  function , 1,..., ,i i p   represent the initial 

conditions, see below. We note   the  p   

dimensional vector 1( ,..., ).p   The p  function 

, 1,..., ,ext

iI i p  represent external factors from 

other network areas. We note 
extI  the p   

dimensional vector 
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matrix of functions , 1,...,{ }ij i j pJ J   represents the 

connectivity between populations i  and ,j  see 

below. The p  real values , 1,..., ,ih i p  

determine the threshold of activity for each 

population, that is, the value of the nodes potential 

corresponding to 50% of the maximal activity. The 

p real positive values , 1,..., ,i i p   determine 

the slopes of the sigmoids at the origin. Finally the 

p real positive values , 1,..., ,il i p   determine the 

speed at which each anycast node potential 

decreases exponentially toward its real value. We 

also introduce the function : ,p pS R R  defined 
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the population given by the linear response of data 

transfer. ( )i
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  is replaced by 
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d
l

dt
  to use 

the alpha function response. We use ( )i

d
l

dt
  for 

simplicity although our analysis applies to more 

general intrinsic dynamics. For the sake, of 

generality, the propagation delays are not assumed to 

be identical for all populations, hence they are 

described by a matrix ( , )r r  whose element 

( , )ij r r is the propagation delay between 

population j  at r  and population i  at .r  The 

reason for this assumption is that it is still unclear 

from anycast if propagation delays are independent 
of the populations. We assume for technical reasons 

that   is continuous, that is 
20( , ).p pC R 

   

Moreover packet data indicate that   is not a 

symmetric function i.e., ( , ) ( , ),ij ijr r r r   thus 

no assumption is made about this symmetry unless 

otherwise stated. In order to compute the righthand 

side of (1), we need to know the node potential 

factor V  on interval [ ,0].T  The value of T  is 

obtained by considering the maximal delay: 
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A. Mathematical Framework 

A convenient functional setting for the non-delayed 

packet field equations is to use the space 
2 ( , )pF L R   which is a Hilbert space endowed 

with the usual inner product: 
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Is the linear continuous operator satisfying 
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  Notice that most of the 

papers on this subject assume   infinite, hence 
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Proposition 1.0  If the following assumptions are 
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Then for any ,C  there exists a unique solution 

1 0([0, ), ) ([ , , )mV C F C F      to (3) 

Notice that this result gives existence on ,R  finite-

time explosion is impossible for this delayed 

differential equation. Nevertheless, a particular 

solution could grow indefinitely, we now prove that 
this cannot happen. 

 

B. Boundedness of Solutions 

A valid model of neural networks should only 

feature bounded packet node potentials.  
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2

( , ) ( ) ( ) ( )t F F F
f t V l V t p J I V t    

  

Thus,  if 

 
2.

( ) 2 , ( , ) 0
2

def def
F

tF

p J I lR
V t R f t V

l


 
        

 

Let us show that the open route of F  of center 0 

and radius , ,RR B  is stable under the dynamics of 

equation. We know that ( )V t  is defined for all 

0t s  and that 0f   on ,RB  the boundary of 

RB . We consider three cases for the initial condition 

0.V If 0 C
V R  and set 

sup{ | [0, ], ( ) }.RT t s t V s B     Suppose 

that ,T R  then ( )V T  is defined and belongs to 

,RB  the closure of ,RB  because  
RB is closed, in 

effect to ,RB  we also have 

2
| ( , ) 0t T TF

d
V f T V

dt
      because 

( ) .RV T B  Thus we deduce that for 0   and 

small enough, ( ) RV T B   which contradicts 

the definition of T. Thus T R  and 
RB is stable. 

 Because f<0 on , (0)R RB V B   implies 

that 0, ( ) Rt V t B   . Finally we consider the 

case (0) RV CB . Suppose that   

0, ( ) ,Rt V t B    then 

2
0, 2 ,

F

d
t V

dt
     thus ( )

F
V t  is 

monotonically decreasing and reaches the value of R 

in finite time when ( )V t  reaches .RB  This 

contradicts our assumption.  Thus  

0 | ( ) .RT V T B     

 

Proposition 1.1 : Let s  and t   be measured simple 

functions on .X  for ,E M  define 

 

( ) (1)
E

E s d  
  

Then 


 is a measure on M .  

( ) (2)
X X X

s t d s d td      
  

Proof : If s  and if 1 2, ,...E E  are disjoint members 

of M whose union is ,E  the countable additivity of 

  shows that  

1 1 1

1 1 1

( ) ( ) ( )

( ) ( )

n n

i i i i r

i i r

n

i i r r

r i r

E A E A E

A E E

    

  



  

 

  

   

  

  

 

  

Also,
( ) 0,  

 so that 


 is not identically . 

Next, let  s  be as before, let 1,..., m   be the 

distinct values of  t,and let { : ( ) }j jB x t x    If 

,ij i jE A B   the

( ) ( ) ( )
ij

i j ij
E

s t d E        

and ( ) ( )
ij ij

i ij j ij
E E

sd td E E           

Thus (2) holds with ijE  in place of X . Since  X is 

the disjoint union of the sets 

(1 ,1 ),ijE i n j m     the first half of our 

proposition implies that (2) holds. 

 

 

Theorem 1.1: If K  is a compact set in the plane 

whose complement is connected, if f  is a 

continuous complex function on K  which is 

holomorphic in the interior of , and if 0,   then 

there exists a polynomial P  such that 

( ) ( )f z P z    for all z K .  If the interior of 

K is empty, then part of the hypothesis is vacuously 
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satisfied, and the conclusion holds for every 

( )f C K . Note that  K need to be connected. 

Proof: By Tietze’s theorem, f  can be extended to a 

continuous function in the plane, with compact 

support. We fix one such extension and denote it 

again by f . For any 0,   let ( )   be the 

supremum of the numbers 
2 1( ) ( )f z f z  Where 

1z  and 2z  are subject to the condition 

2 1z z   . Since f  is uniformly continous, we 

have 
0

lim ( ) 0 (1)


 


  From now on, 

  will be fixed. We shall prove that there is a 

polynomial P  such that  
 

( ) ( ) 10,000 ( ) ( ) (2)f z P z z K      

By (1),   this proves the theorem. Our first objective 

is the construction of a function 
' 2( ),cC R  such 

that for all z   

( ) ( ) ( ), (3)

2 ( )
( )( ) , (4)

f z z

z

 

 



 

 
  

And 

1 ( )( )
( ) ( ), (5)

X

z d d i
z


    

 


    

   

 

Where X  is the set of all points in the 

support of   whose distance from the complement 

of K  does not  . (Thus  X contains no point 

which is “far within” K .) We construct  as the 

convolution of f  with a smoothing function A. Put 

( ) 0a r   if ,r  put  

 
2

2

2 2

3
( ) (1 ) (0 ), (6)

r
a r r 

 
   

  
And define 

( ) ( ) (7)A z a z
  

For all complex z . It is clear that 
' 2( )cA C R . We 

claim that  

2

3

1, (8)

0, (9)

24 2
, (10)

15

sR

R

R

A

A

A
 



 

  







    

 

The constants are so adjusted in (6) that (8) holds.  

(Compute the integral in polar coordinates), (9) 

holds simply because A  has compact support. To 

compute (10), express A  in polar coordinates, and 

note that 0,A


 


  

 

' ,A a
r

  
  

Now define 

2 2

( ) ( ) ( ) ( ) (11)

R R

z f z Ad d A z f d d           

  

Since f  and A  have compact support, so does  . 

Since  

 

2

( ) ( )

[ ( ) ( )] ( ) (12)

R

z f z

f z f z A d d   

 

  
 

And ( ) 0A    if ,    (3) follows from (8). 

The difference quotients of A  converge boundedly 
to the corresponding partial derivatives, since 

' 2( )cA C R . Hence the last expression in (11) may 

be differentiated under the integral sign, and we 

obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   

The last equality depends on (9). Now (10) and (13) 

give (4). If we write (13) with x  and y  in place 

of ,  we see that   has continuous partial 

derivatives, if we can show that 0   in ,G  

where G  is the set of all z K  whose distance 

from the complement of K  exceeds .  We shall do 

this by showing that  

 ( ) ( ) ( ); (14)z f z z G    

Note that 0f   in G , since f  is holomorphic 

there. Now if ,z G  then z   is in the interior of 

K  for all   with .   The mean value 

property for harmonic functions therefore gives, by 

the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

 








  

  

 

 
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For all z G  , we have now proved (3), (4), and 

(5) The definition of X  shows that X is compact 

and that X  can be covered by finitely many open 

discs 1,..., ,nD D  of radius 2 ,  whose centers are 

not in .K  Since 
2S K  is connected, the center of 

each jD  can be joined to   by a polygonal path in 

2S K . It follows that each jD contains a compact 

connected set ,jE  of diameter at least 2 ,  so that 

2

jS E  is connected and so that .jK E     

with 2r  . There are functions 
2( )j jg H S E   and constants jb  so that the 

inequalities. 

 

2

2

50
( , ) , (16)

1 4,000
( , ) (17)

j

j

Q z

Q z
z z







 



 
 

   

Hold for jz E  and ,jD   if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z      

Let   be the complement of 1 ... .nE E   Then 

 is an open set which contains .K  Put 

1 1X X D   and 

1 1( ) ( ... ),j j jX X D X X       for 

2 ,j n    

Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z       

And 

1
( ) ( )( ) ( , ) (20)

( )

X

F z R z d d

z

   




 





  

Since,  

1

1
( ) ( )( ) ( , ) , (21)

i

j

j X

F z Q z d d   


     

(18) shows that F  is a finite linear combination of 

the functions jg  and 
2

jg . Hence ( ).F H 
 
By 

(20), (4), and (5) we have  

2 ( )
( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

 




  


 

 



  

Observe that the inequalities (16) and (17) are valid 

with R  in place of jQ  if X   and .z  

Now fix  .z   , put ,iz e     and estimate 

the integrand in (22) by (16) if 4 ,   by (17) if 

4 .    The integral in (22) is then seen to be less 

than the sum of 

4

0

50 1
2 808 (23)d



   
 

 
  

 
   

And  
2

24

4,000
2 2,000 . (24)d




   





   

Hence (22) yields 

( ) ( ) 6,000 ( ) ( ) (25)F z z z    

Since ( ), ,F H K    and 
2S K  is 

connected, Runge’s theorem shows that F  can be 

uniformly approximated on K  by polynomials. 

Hence (3) and (25) show that (2) can be satisfied. 

This completes the proof. 
 

Lemma 1.0 : Suppose 
' 2( ),cf C R  the space of all 

continuously differentiable functions in the plane, 
with compact support. Put  

1
(1)

2
i

x y

  
   

  
  

 

Then the following “Cauchy formula” holds: 

2

1 ( )( )
( )

( ) (2)

R

f
f z d d

z

i


 

 

  


 



 


  

Proof: This may be deduced from Green’s theorem. 

However, here is a simple direct proof: 

Put ( , ) ( ), 0,ir f z re r      real 

 If ,iz re     the chain rule gives 

1
( )( ) ( , ) (3)

2

i i
f e r

r r

  


  
     

  

The right side of (2) is therefore equal to the limit, as 

0,   of 

 

2

0

1
(4)

2

i
d dr

r r





 




   
  

  
 

 

 

 

 

For each 0,r   is periodic in ,  with period 

2 . The integral of /    is therefore 0, and (4) 

becomes 
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2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

 




    

 

 
 

  
  

As 0, ( , ) ( )f z      uniformly.  This 

gives (2)  

 

If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the 

condition ( ) . Conversely, 

,

( )( ) ( ),
nA

c X d X c d X finite sums   

   

  



 

  


  

and so if A  satisfies ( ) , then the subspace 

generated by the monomials ,X a   , is an 

ideal. The proposition gives a classification of the 

monomial ideals in  1,... nk X X : they are in one 

to one correspondence with the subsets A  of 
n  

satisfying ( ) . For example, the monomial ideals in 

 k X  are exactly the ideals ( ), 1nX n  , and the 

zero ideal (corresponding to the empty set A ). We 

write |X A   for the ideal corresponding to 

A  (subspace generated by the ,X a   ). 

 

LEMMA 1.1.  Let S  be a subset of 
n . The the 

ideal a  generated by ,X S    is the monomial 

ideal corresponding to   

 | ,
df

n nA some S           

Thus, a monomial is in a  if and only if it is 

divisible by one of the , |X S    

PROOF.   Clearly A  satisfies   , and 

|a X A   . Conversely, if A  , then 

n    for some S , and 

X X X a     . The last statement follows 

from the fact that | nX X      . Let 

nA   satisfy   . From the geometry of  A , it 

is clear that there is a finite set of elements 

 1,... sS     of A such that  

 2| ,n

i iA some S          

(The 'i s  are the corners of A ) Moreover, 

|
df

a X A   is generated by the monomials 

,i

iX S
   . 

 

DEFINITION 1.0.   For a nonzero ideal a  in 

 1 ,..., nk X X , we let ( ( ))LT a  be the ideal 

generated by  

 ( ) |LT f f a   

 

LEMMA 1.2   Let a  be a nonzero ideal in  

 1 ,..., nk X X ; then ( ( ))LT a is a monomial 

ideal, and it equals 1( ( ),..., ( ))nLT g LT g  for 

some 1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described as 

the ideal generated by the leading monomials (rather 

than the leading terms) of elements of a . 

 

THEOREM 1.2.  Every ideal a  in 

 1 ,..., nk X X is finitely generated; more 

precisely, 1( ,..., )sa g g  where 1,..., sg g are any 

elements of a  whose leading terms generate 

( )LT a   

PROOF.   Let f a . On applying the division 

algorithm, we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X    

 , where either 0r   or no monomial occurring in it 

is divisible by any ( )iLT g . But 

i i
r f a g a   , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g  , 

implies that every monomial occurring in r  is 

divisible by one in ( )iLT g . Thus 0r  , and 

1( ,..., )sg g g . 

 

DEFINITION 1.1.   A finite subset 

 1,| ..., sS g g  of an ideal a  is a standard (

..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, 

S is a standard basis if the leading term of every 

element of a is divisible by at least one of the 

leading terms of the ig . 

THEOREM 1.3  The ring 1[ ,..., ]nk X X  is 

Noetherian i.e., every ideal is finitely generated. 

PROOF. For  1,n   [ ]k X  is a principal ideal 

domain, which means that every ideal is generated 

by single element. We shall prove the theorem by 

induction on n . Note that the obvious map 

1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X   is an 
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isomorphism – this simply says that every 

polynomial f  in n  variables 1,... nX X  can be 

expressed uniquely as a polynomial in nX  with 

coefficients in 1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r

n n n r nf X X a X X X a X X      

Thus the next lemma will complete the proof 

 

LEMMA 1.3.  If A  is Noetherian, then so also is 

[ ]A X   

PROOF.          For a polynomial 
 

1

0 1 0( ) ... , , 0,r r

r if X a X a X a a A a        

r  is called the degree of f , and 0a  is its leading 

coefficient. We call 0 the leading coefficient of the 

polynomial 0.  Let a  be an ideal in [ ]A X . The 

leading coefficients of the polynomials in a  form an 

ideal 
'a  in A ,  and since A  is Noetherian, 

'a will 

be finitely generated. Let 1,..., mg g  be elements of 

a  whose leading coefficients generate 
'a , and let 

r be the maximum degree of ig . Now let ,f a  

and suppose f  has degree s r , say, 

...sf aX   Then 
'a a  , and so we can write 

, ,i ii

i i

a b a b A

a leading coefficient of g

 




  

Now 

, deg( ),
is r

i i i if b g X r g


  has degree 

deg( )f  . By continuing in this way, we find that 

1mod( ,... )t mf f g g  With tf  a 

polynomial of degree t r . For each d r , let 

da  be the subset of A  consisting of 0 and the 

leading coefficients of all polynomials in a  of 

degree ;d  it is again an ideal in  A . Let 

,1 ,,...,
dd d mg g  be polynomials of degree d  whose 

leading coefficients generate da . Then the same 

argument as above shows that any polynomial df  in 

a  of degree d  can be written 

1 ,1 ,mod( ,... )
dd d d d mf f g g  With 1df   

of degree 1d  . On applying this remark 

repeatedly we find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
   Hence 

       

1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
 

 

 and so the polynomials 
01 0,,..., mg g  generate a   

One of the great successes of category theory in 

computer science has been the development of a 

“unified theory” of the constructions underlying 

denotational semantics. In the untyped  -calculus,  

any term may appear in the function position of an 

application. This means that a model D of the  -

calculus must have the property that given a term t  

whose interpretation is ,d D  Also, the 

interpretation of a functional abstraction like x . x  

is most conveniently defined as a function from 

Dto D  , which must then be regarded as an 

element of D. Let  : D D D    be the 

function that picks out elements of D to  represent 

elements of  D D  and  : D D D    

be the function that maps elements of D to functions 

of D.  Since ( )f  is intended to represent the 

function f  as an element of D, it makes sense to 

require that ( ( )) ,f f    that is, 

 D D
o id 


   Furthermore, we often want to 

view every element of D as representing some 

function from D to D and require that elements 

representing the same function be equal – that is   

( ( ))

D

d d

or

o id

 

 





  

 

The latter condition is called extensionality. 

These conditions together imply that and   are 

inverses--- that is, D is isomorphic to the space of 

functions from D to D  that can be the interpretations 

of functional abstractions:  D D D   .Let us 

suppose we are working with the untyped 

calculus  , we need a solution ot the equation 

 ,D A D D    where A is some 

predetermined domain containing interpretations for 

elements of C.  Each element of D corresponds to 

either an element of A or an element of  ,D D  

with a tag. This equation can be solved by finding 

least fixed points of the function 

 ( )F X A X X    from domains to domains 

--- that is, finding domains X  such that 

 ,X A X X    and such that for any domain 

Y also satisfying this equation, there is an embedding 

of X to Y  --- a pair of maps 

R

f

f

X Y   
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Such that   
R

X

R

Y

f o f id

f o f id




  

 

Where f g  means that 

f approximates g  in some ordering representing 

their information content. The key shift of 

perspective from the domain-theoretic to the more 

general category-theoretic approach lies in 

considering F not as a function on domains, but as a 

functor on a category of domains. Instead of a least 

fixed point of the function, F. 

 

Definition 1.3: Let K be a category and 

:F K K  as a functor. A fixed point of F is a 

pair (A,a), where A is a K-object and 

: ( )a F A A  is an isomorphism. A prefixed 

point of F is a pair (A,a), where A is a K-object and 

a is any arrow from F(A) to A 

Definition 1.4 : An chain  in a category K  is a 

diagram of the following form: 

1 2

1 2 .....
of f f

oD D D       

Recall that a cocone   of an chain    is a K-

object X and a collection of K –arrows 

 : | 0i iD X i    such that 1i i io f    for 

all 0i  . We sometimes write : X   as a 

reminder of the arrangement of ' s  components 

Similarly, a colimit : X  is a cocone with 

the property that if 
': X   is also a cocone 

then there exists a unique mediating arrow 
':k X X  such that for all 0,, i ii v k o  . 

Colimits of chains  are sometimes referred to 

as limco its . Dually, an 
op chain   in K is 

a diagram of the following form: 

1 2

1 2 .....
of f f

oD D D    
 
A cone 

: X   of an 
op chain    is a K-object X 

and a collection of K-arrows  : | 0i iD i   such 

that for all 10, i i ii f o    . An  
op -limit of 

an 
op chain     is a cone : X   with 

the property that if 
': X  is also a cone, then 

there exists a unique mediating arrow 
':k X X  

such that for all 0, i ii o k    . We write k  

(or just  ) for the distinguish initial object of K, 

when it has one, and A  for the unique arrow 

from   to each K-object A. It is also convenient to 

write 
1 2

1 2 .....
f f

D D    to denote all of   

except oD  and 0f . By analogy,  
 is  | 1i i  . 

For the images of   and   under F we write  

1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     

We write 
iF  for the i-fold iterated composition of F 

– that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f  

 ,etc. With these definitions we can state that every 

monitonic function on a complete lattice has a least 

fixed point: 

 

Lemma 1.4. Let K  be a category with initial object 

  and let :F K K  be a functor. Define the 

chain   by 
2

! ( ) (! ( )) (! ( ))
2

( ) ( ) .........
F F F F F

F F
     

        

If both : D 
 
and ( ) : ( ) ( )F F F D  

are colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D
 
 is the mediating arrow from 

( )F 
 
 to the cocone 



 
 

 

Theorem 1.4 Let a DAG G given in which 

each node is a random variable, and let a discrete 

conditional probability distribution of each node 

given values of its parents in G be specified. Then 

the product of these conditional distributions yields a 

joint probability distribution P of the variables, and 

(G,P) satisfies the Markov condition. 
 

Proof. Order the nodes according to an ancestral 

ordering. Let 1 2, ,........ nX X X be the resultant 

ordering. Next define.  

 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa

P x pa P x pa

 
 

 

Where iPA is the set of parents of iX of in 

G and ( | )i iP x pa is the specified conditional 

probability distribution. First we show this does 

indeed yield a joint probability distribution. Clearly, 

1 20 ( , ,... ) 1nP x x x   for all values of the 

variables. Therefore, to show we have a joint 

distribution, as the variables range through all their 

possible values, is equal to one. To that end, 

Specified conditional distributions are the 

conditional distributions they notationally represent 

in the joint distribution. Finally, we show the 
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Markov condition is satisfied. To do this, we need 

show for 1 k n   that  

whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

 




 

Where kND is the set of nondescendents of kX of 

in G. Since k kPA ND , we need only show 

( | ) ( | )k k k kP x nd P x pa . First for a given k , 

order the nodes so that all and only nondescendents 

of kX precede kX in the ordering. Note that this 

ordering depends on k , whereas the ordering in the 

first part of the proof does not. Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X



 





 

follows 
kd    

 

We define the 
thm cyclotomic field to be 

the field   / ( ( ))mQ x x
 
Where ( )m x is the 

thm cyclotomic polynomial.   / ( ( ))mQ x x  

( )m x  has degree ( )m over Q since ( )m x

has degree ( )m . The roots of ( )m x  are just the 

primitive 
thm roots of unity, so the complex 

embeddings of   / ( ( ))mQ x x are simply the 

( )m maps  

 : / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k

k m

Q x x C

k m k m where

x



 



 





  

m being our fixed choice of primitive 
thm root of 

unity. Note that ( )k

m mQ  for every ;k it follows 

that ( ) ( )k

m mQ Q  for all k relatively prime to 

m . In particular, the images of the i coincide, so 

  / ( ( ))mQ x x is Galois over Q . This means that 

we can write ( )mQ  for   / ( ( ))mQ x x without 

much fear of ambiguity; we will do so from now on, 

the identification being .m x  One advantage of 

this is that one can easily talk about cyclotomic 

fields being extensions of one another,or 

intersections or compositums; all of these things 

take place considering them as subfield of .C  We 

now investigate some basic properties of cyclotomic 
fields. The first issue is whether or not they are all 

distinct; to determine this, we need to know which 

roots of unity lie in ( )mQ  .Note, for example, that 

if m is odd, then m is a 2 thm root of unity. We 

will show that this is the only way in which one can 

obtain any non-
thm roots of unity. 

 

LEMMA 1.5   If m divides n , then ( )mQ   is 

contained in ( )nQ   

PROOF. Since ,
n

m
m  we have ( ),m nQ 

so the result is clear 

 

LEMMA 1.6   If m and n are relatively prime, then  

  ( , ) ( )m n nmQ Q    

and 

           ( ) ( )m nQ Q Q    

(Recall the ( , )m nQ    is the compositum of 

( ) ( ) )m nQ and Q   

 

PROOF. One checks easily that m n  is a primitive 

thmn root of unity, so that  

( ) ( , )mn m nQ Q    

    ( , ) : ( ) : ( :

( ) ( ) ( );

m n m nQ Q Q Q Q Q

m n mn

   

  



 
 

Since  ( ) : ( );mnQ Q mn  this implies that 

( , ) ( )m n nmQ Q  
 
We know that ( , )m nQ  

has degree ( )mn
 
over  Q , so we must have 

   ( , ) : ( ) ( )m n mQ Q n     

and 

 ( , ) : ( ) ( )m n mQ Q m     

 

 ( ) : ( ) ( ) ( )m m nQ Q Q m      

And thus that ( ) ( )m nQ Q Q    

 

PROPOSITION 1.2 For any m and n  

 

 ,
( , ) ( )m n m n

Q Q    

And  

( , )( ) ( ) ( );m n m nQ Q Q     
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here  ,m n and  ,m n denote the least common 

multiple and the greatest common divisor of m and 

,n respectively. 

 

PROOF.    Write 1 1

1 1...... ....k ke fe f

k km p p and p p

where the ip are distinct primes. (We allow 

i ie or f to be zero) 

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q









 

 
An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Q   
 

 

Mutual information measures the information 

transferred when ix  is sent and iy  is received, and 

is defined as 

2

( )

( , ) log (1)
( )

i

i
i i

i

x
P

y
I x y bits

P x
  

In a noise-free channel, each iy is uniquely 

connected to the corresponding ix  , and so they 

constitute an input –output pair ( , )i ix y  for which 

 2

1
( ) 1 ( , ) log

( )
i

i j
j i

x
P and I x y

y P x
  bits; 

that is, the transferred information is equal to the 

self-information that corresponds to the input ix
 
In a 

very noisy channel, the output iy and input ix would 

be completely uncorrelated, and so 

( ) ( )i
i

j

x
P P x

y
  and also ( , ) 0;i jI x y  that is, 

there is no transference of information. In general, a 

given channel will operate between these two 

extremes. The mutual information is defined 

between the input and the output of a given channel. 

An average of the calculation of the mutual 

information for all input-output pairs of a given 

channel is the average mutual information: 

2

. .

(

( , ) ( , ) ( , ) ( , ) log
( )

i

j

i j i j i j

i j i j i

x
P

y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 

 bits per symbol . This calculation is done over the 

input and output alphabets. The average mutual 

information. The following expressions are useful 

for modifying the mutual information expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yx
P x y P P y P P x

y x

y
P y P P x

x

x
P x P P y

y

 









 

Then 

.

2

.

2

.

2

.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j

i j

i j

i j i

i j
ii j

j

i j

i j i

i
j

ji i

i

i i

I X Y P x y

P x y
P x

P x y
x

P
y

P x y
P x

x
P P y

y P x

P x H X
P x

XI X Y H X H
Y



 
  

 

 
 

  
 
 

 
 
 

 
  

 



 













 

Where 
2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x y
Y x

P
y

  

is usually called the equivocation. In a sense, the 

equivocation can be seen as the information lost in 

the noisy channel, and is a function of the backward 

conditional probability. The observation of an output 

symbol jy provides ( ) ( )XH X H
Y

  bits of 

information. This difference is the mutual 
information of the channel. Mutual Information: 

Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yx
P P y P P x

y x
  

The mutual information fits the condition 
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( , ) ( , )I X Y I Y X  

And by interchanging input and output it is also true 

that 

( , ) ( ) ( )YI X Y H Y H
X

   

Where 

2

1
( ) ( ) log

( )
j

j j

H Y P y
P y

  

This last entropy is usually called the noise 

entropy. Thus, the information transferred through 

the channel is the difference between the output 

entropy and the noise entropy. Alternatively, it can 
be said that the channel mutual information is the 

difference between the number of bits needed for 

determining a given input symbol before knowing 

the corresponding output symbol, and the number of 

bits needed for determining a given input symbol 

after knowing the corresponding output symbol 

( , ) ( ) ( )XI X Y H X H
Y

   

As the channel mutual information expression is a 

difference between two quantities, it seems that this 

parameter can adopt negative values. However, and 

is spite of the fact that for some , ( / )j jy H X y  

can be larger than ( )H X , this is not possible for 

the average value calculated over all the outputs: 

2 2

, ,

( )
( , )

( , ) log ( , ) log
( ) ( ) ( )

i

j i j

i j i j

i j i ji i j

x
P

y P x y
P x y P x y

P x P x P y
   

Then 

,

( ) ( )
( , ) ( , ) 0

( , )

i j

i j

i j i j

P x P y
I X Y P x y

P x y
    

Because this expression is of the form 

2

1

log ( ) 0
M

i
i

i i

Q
P

P

  

 

The above expression can be applied due to 

the factor ( ) ( ),i jP x P y which is the product of two 

probabilities, so that it behaves as the quantity iQ , 

which in this expression is a dummy variable that 

fits the condition 1ii
Q  . It can be concluded 

that the average mutual information is a non-

negative number. It can also be equal to zero, when 

the input and the output are independent of each 

other. A related entropy called the joint entropy is 

defined as 

2

,

2

,

2

,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j

i j i j

i j

i j

i j i j

i j

i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y













 

 

Theorem 1.5: Entropies of the binary erasure 

channel (BEC) The BEC is defined with an alphabet 

of two inputs and three outputs, with symbol 

probabilities.  

1 2( ) ( ) 1 ,P x and P x    and transition 

probabilities 

 
3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y y
P p and P

x x

y
and P

x

y
and P p

x

y
and P p

x

  





 

 

 

Lemma 1.7. Given an arbitrary restricted time-

discrete, amplitude-continuous channel whose 

restrictions are determined by sets nF and whose 

density functions exhibit no dependence on the state

s , let n be a fixed positive integer, and ( )p x an 

arbitrary probability density function on Euclidean 

n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F
. 

For any 

real number a, let 

( | )
( , ) : log (1)

( )

p y x
A x y a

p y

 
  
 

 

Then for each positive integer u , there is a code 

( , , )u n  such that 

   ( , ) (2)aue P X Y A P X F     

 

Where 

 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 
 

Proof: A sequence 
(1)x F such that 

 
 

1

(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B to be (1)x
A . Having 

chosen 
(1) ( 1),........, kx x 

and 1 1,..., kB B  , select 

kx F such that 
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( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


 

 

Set ( )

1

1
k

k

k ix i
B A B




  , If the process does not 

terminate in a finite number of steps, then the 

sequences 
( )ix and decoding sets , 1, 2,..., ,iB i u

form the desired code. Thus assume that the process 

terminates after t  steps. (Conceivably 0t  ). We 

will show t u  by showing that  

   ( , )ate P X Y A P X F      . We 

proceed as follows.  

Let 

 

1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x








 

  

 



 



 

  



 

C. Algorithms 

Ideals.    Let A be a ring. Recall that an ideal a in A 

is a subset such that a is subgroup of A regarded as a 

group under addition; 

 
,a a r A ra A   

   
The ideal generated by a subset S of A is the 

intersection of all ideals A containing a ----- it is 

easy to verify that this is in fact an ideal, and that it 

consist of all finite sums of the form i i
rs  with 

,i ir A s S  . When  1,....., mS s s , we shall 

write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set 

 | ,a b a a b b    is an ideal, denoted by 

a b . The ideal generated by   | ,ab a a b b 

is denoted by ab . Note that ab a b  . Clearly 

ab consists of all finite sums i i
a b  with ia a  

and ib b , and if 1( ,..., )ma a a  and 

1( ,..., )nb b b , then 

1 1( ,..., ,..., )i j m nab a b a b a b .Let a  be an ideal 

of A. The set of cosets of a in A forms a ring /A a
, and a a a  is a homomorphism 

: /A A a  . The map 
1( )b b   is a one to 

one correspondence between the ideals of /A a  and 

the ideals of A  containing a An ideal p  if prime if 

p A  and ab p a p    or b p . Thus p  

is prime if and only if /A p  is nonzero and has the 

property that  0, 0 0,ab b a      i.e., 

/A p is an integral domain. An ideal m  is 

maximal if |m A  and there does not exist an ideal 

n  contained strictly between m and A . Thus m is 

maximal if and only if /A m  has no proper nonzero 

ideals, and so is a field. Note that m  maximal   

m prime. The ideals of A B  are all of the form 

a b , with a  and b  ideals in A  and B . To see 

this, note that if c  is an ideal in  A B  and 

( , )a b c , then ( ,0) ( , )(1,0)a a b c   and 

(0, ) ( , )(0,1)b a b c  . This shows that 

c a b   with  

 | ( , )a a a b c some b b  
  

and  

  
 | ( , )b b a b c some a a  

 
 

Let A  be a ring. An A -algebra is a ring B  together 

with a homomorphism :Bi A B . A 

homomorphism of A -algebra B C  is a 

homomorphism of rings : B C   such that 

( ( )) ( )B Ci a i a   for all . An  A -algebra 

B is said to be finitely generated ( or of finite-type 

over A) if there exist elements 1,..., nx x B  such 

that every element of B can be expressed as a 

polynomial in the ix  with coefficients in ( )i A , i.e., 

such that the homomorphism  1,..., nA X X B  

sending iX  to  ix is surjective.  A ring 

homomorphism A B  is finite, and B  is finitely 

generated as an A-module. Let k  be a field, and let 

A be a k -algebra. If 1 0  in A , then the map 

k A  is injective, we can identify k with its 

image, i.e., we can regard k as a subring of A  . If 

1=0 in a ring R, the R is the zero ring, i.e.,  0R  . 

Polynomial rings.  Let  k  be a field. A monomial 

in 1,..., nX X  is an expression of the form 

1

1 ... ,naa

n jX X a N  . The total degree of the 

monomial is ia . We sometimes abbreviate it by 

1, ( ,..., ) n

nX a a   
. 

The elements of the 

polynomial ring  1,..., nk X X  are finite sums

1

1 1.... 1 ....... , ,n

n n

aa

a a n a a jc X X c k a  
   

a A
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With the obvious notions of equality, addition and 

multiplication. Thus the monomials from basis for  

 1,..., nk X X  as a k -vector space. The ring 

 1,..., nk X X is an integral domain, and the only 

units in it are the nonzero constant polynomials. A 

polynomial 1( ,..., )nf X X  is irreducible if it is 

nonconstant and has only the obvious factorizations, 

i.e., f gh g   or h  is constant. Division in 

 k X . The division algorithm allows us to divide a 

nonzero polynomial into another: let f  and g  be 

polynomials in  k X with 0;g   then there exist 

unique polynomials  ,q r k X  such that 

f qg r   with either 0r   or deg r  < deg g . 

Moreover, there is an algorithm for deciding whether 

( )f g , namely, find r and check whether it is 

zero. Moreover, the Euclidean algorithm allows to 
pass from finite set of generators for an ideal in 

 k X to a single generator by successively 

replacing each pair of generators with their greatest 

common divisor. 

 

 (Pure) lexicographic ordering (lex). Here 

monomials are ordered by lexicographic(dictionary) 

order. More precisely, let 1( ,... )na a   and 

1( ,... )nb b   be two elements of 
n ; then  

   and  X X  (lexicographic ordering) if, 

in the vector difference    , the left most 

nonzero entry is positive. For example,  

 
2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z  . Note that 

this isn’t quite how the dictionary would order them: 

it would put XXXYYZZZZ  after XXXYYZ . 
Graded reverse lexicographic order (grevlex). Here 

monomials are ordered by total degree, with ties 

broken by reverse lexicographic ordering. Thus, 

   if i ia b  , or i ia b   and in 

   the right most nonzero entry is negative. For 

example:  
4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ 
. 

 

Orderings on  1,... nk X X  . Fix an ordering on 

the monomials in  1,... nk X X . Then we can write 

an element f  of  1,... nk X X  in a canonical 

fashion, by re-ordering its elements in decreasing 

order. For example, we would write 

2 2 3 2 24 4 5 7f XY Z Z X X Z   
  

as 
3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex    

  
or 

2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex   

  

Let  1,..., na X k X X

   , in decreasing 

order: 

0 1

0 1 0 1 0..., ..., 0f a X X
 

         

  

Then we define. 

 The multidegree of 
f

 to be multdeg(
f

)= 0 ;  

 The leading coefficient of 
f

to be LC(
f

)=
0

a ; 

 The leading monomial of  
f

to be LM(
f

) = 
0X


; 

 The leading term of 
f

to be LT(
f

) = 0

0
a X



   

For the polynomial 
24 ...,f XY Z   the 

multidegree is (1,2,1), the leading coefficient is 4, 

the leading monomial is 
2XY Z , and the leading 

term is  
24XY Z . The division algorithm in 

 1,... nk X X . Fix a monomial ordering in 
2 . 

Suppose given a polynomial f  and an ordered set 

1( ,... )sg g  of polynomials; the division algorithm 

then constructs polynomials 1,... sa a  and r   such 

that 1 1 ... s sf a g a g r      Where either 

0r   or no monomial in r  is divisible by any of 

1( ),..., ( )sLT g LT g   Step 1: If 

1( ) | ( )LT g LT f , divide 1g  into f  to get 

 1 1 1 1

1

( )
, ,...,

( )
n

LT f
f a g h a k X X

LT g
   

 

If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f    (different 1a ) with 1( )LT f  not 

divisible by 1( )LT g . Now divide 2g  into 1f , and 

so on, until 1 1 1... s sf a g a g r      With 

1( )LT r  not divisible by any 1( ),... ( )sLT g LT g   

Step 2: Rewrite 1 1 2( )r LT r r  , and repeat Step 1 

with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r       (different 

'ia s  )   Monomial ideals. In general, an ideal a  

will contain a polynomial without containing the 

individual terms of the polynomial; for example, the 
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ideal 
2 3( )a Y X   contains 

2 3Y X but not 

2Y  or 
3X . 

 

DEFINITION 1.5. An ideal a  is monomial if 

c X a X a 

     

 all   with 0c  .  

PROPOSITION 1.3. Let a be a monomial ideal, and 

let  |A X a  . Then A satisfies the 

condition , ( )nA           

And a  is the k -subspace of  1,..., nk X X  

generated by the ,X A   . Conversely, of A  is 

a subset of 
n  satisfying   , then the k-subspace  

a  of  1,..., nk X X  generated by  |X A 

is a monomial ideal. 

 

PROOF.  It is clear from its definition that a 

monomial ideal a  is the  k -subspace of 

 1,..., nk X X
  

generated by the set of monomials it contains. If 

X a 
 and 

 1,..., nX k X X 
 . 

   

If a permutation is chosen uniformly and at random 

from the !n  possible permutations in ,nS  then the 

counts 
( )n

jC  of cycles of length j  are dependent 

random variables. The joint distribution of 
( ) ( ) ( )

1( ,..., )n n n

nC C C  follows from Cauchy’s 

formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !

j

nn
cn

j

j j j

P C c N n c jc n
n j c 

 
    

 
 

  

for 
nc  .  

 

Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

m
n n n

mn

j j

jj j

m m

E C jm n
j  

     
             

 

  

 

Proof.   This can be established directly by 

exploiting cancellation of the form 
[ ] !/ 1/ ( )!jm

j j j jc c c m    when ,j jc m  which 

occurs between the ingredients in Cauchy’s formula 

and the falling factorials in the moments. Write 

jm jm . Then, with the first sum indexed by 

1( ,... ) n

nc c c    and the last sum indexed by  

1( ,..., ) n

nd d d    via the correspondence 

,j j jd c m   we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j

cj j

m
nn

j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  

This last sum simplifies to the indicator 1( ),m n  

corresponding to the fact that if 0,n m   then 

0jd   for ,j n m   and a random permutation 

in n mS   must have some cycle structure 

1( ,..., )n md d  . The moments of 
( )n

jC   follow 

immediately as 

 ( ) [ ]( ) 1 (1.2)n r r

jE C j jr n    

We note for future reference that (1.4) can also be 

written in the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j

jj j

E C E Z jm n
 

     
      

    
 

  

Where the jZ  are independent Poisson-distribution 

random variables that satisfy ( ) 1/jE Z j   

 

The marginal distribution of cycle counts provides 

a formula for the joint distribution of the cycle 

counts ,n

jC  we find the distribution of 
n

jC  using a 

combinatorial approach combined with the 
inclusion-exclusion formula. 

 

Lemma  1.8.   For 1 ,j n   

 
[ / ]

( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j

l

j j
P C k

k l

 



     

Proof.     Consider the set I  of all possible cycles of 

length ,j  formed with elements chosen from 

 1,2,... ,n  so that 
[ ]/j jI n . For each ,I   

consider the “property” G  of having ;  that is,  

G is the set of permutations nS   such that   

is one of the cycles of .  We then have 

( )!,G n j   since the elements of  1,2,...,n  

not in   must be permuted among themselves. To 

use the inclusion-exclusion formula we need to 

calculate the term ,rS  which is the sum of the 

probabilities of the r -fold intersection of properties, 

summing over all sets of r distinct properties. There 
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are two cases to consider. If the r properties are 

indexed by r cycles having no elements in common, 

then the intersection specifies how rj  elements are 

moved by the permutation, and there are 

( )!1( )n rj rj n   permutations in the intersection. 

There are 
[ ] / ( !)rj rn j r  such intersections. For the 

other case, some two distinct properties name some 
element in common, so no permutation can have 

both these properties, and the r -fold intersection is 

empty. Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

  

  
  

Finally, the inclusion-exclusion series for the 

number of permutations having exactly k  properties 

is 

,

0

( 1)l

k l

l

k l
S

l




 
  

 
   

Which simplifies to (1.1) Returning to the original 

hat-check problem, we substitute j=1 in (1.1) to 

obtain the distribution of the number of fixed points 

of a random permutation. For 0,1,..., ,k n   

( )

1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l





     

and the moments of 
( )

1

nC  follow from (1.2) with 

1.j   In particular, for  2,n   the mean and 

variance of 
( )

1

nC are both equal to 1. The joint 

distribution of 
( ) ( )

1( ,..., )n n

bC C  for any 1 b n   

has an expression similar to (1.7); this too can be 
derived by inclusion-exclusion. For any 

1( ,..., ) b

bc c c    with ,im ic   

1

( ) ( )

1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i

n n

b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l

 

 

 



     
     

     


 

  

The joint moments of the first b  counts 
( ) ( )

1 ,...,n n

bC C  can be obtained directly from (1.2) 

and (1.3) by setting 1 ... 0b nm m      

 

The limit distribution of cycle counts 

It follows immediately from Lemma 1.2 that for 

each fixed ,j  as ,n  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k


     

So that 
( )n

jC converges in distribution to a random 

variable jZ  having a Poisson distribution with 

mean 1/ ;j  we use the notation 
( )n

j d jC Z  

where (1/ )j oZ P j   to describe this. Infact, the 

limit random variables are independent. 

 

Theorem 1.6   The process of cycle counts 

converges in distribution to a Poisson process of   

with intensity 
1j . That is, as ,n   

( ) ( )

1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z

  

Where the , 1, 2,...,jZ j   are independent 

Poisson-distributed random variables with  

1
( )jE Z

j
   

Proof.  To establish the converges in distribution one 

shows that for each fixed 1,b   as ,n   

 
( ) ( )

1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     

 

Error rates 

The proof of Theorem says nothing about 

the rate of convergence. Elementary analysis can be 

used to estimate this rate when 1b  . Using 

properties of alternating series with decreasing 

terms, for 0,1,..., ,k n   

( )

1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 

   

 

It follows that  
1 1

( )

1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

 




    

  


  

Since 
1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n



     
    

  

We see from (1.11) that the total variation distance 

between the distribution 
( )

1( )nL C  of 
( )

1

nC  and the 

distribution 1( )L Z  of 1Z
 

Establish the asymptotics of 
( )( )n

nA C     under 

conditions 0( )A  and 01( ),B  where 

 
'

( ) ( )

1 1

( ) 0 ,

i i

n n

n ij

i n r j r

A C C
    

  
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and 
''( / ) 1 ( )g

i i idr r O i     as ,i   for 

some 
' 0.g    We start with the expression 

'

'
( ) 0

0

0

1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i

i n i
r j r

P T Z n
P A C

P T Z n

E
ir



 

  






 
  

 


  

  

'

0

1 1

1

1 '

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



   

and 

  

'

0

1 1

1

1

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d

n

O n n


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 







 
   

 



  

Where 
 
'

1,2,7
( )n  refers to the quantity 

derived from 
'Z . It thus follows that 

( ) (1 )[ ( )]n d

nP A C Kn    for a constant K , 

depending on Z  and the 
'

ir  and computable 

explicitly from (1.1) – (1.3), if Conditions 0( )A  and 

01( )B  are satisfied and if 
'

( )g

i O i    from some 

' 0,g   since, under these circumstances, both 

 
1 '

1,2,7
( )n n  and  

 
1

1,2,7
( )n n  tend to zero as 

.n   In particular, for polynomials and square 

free polynomials, the relative error in this asymptotic 

approximation is of order 
1n
 if 

' 1.g    

 

For 0 /8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n b





 

  

Where  7,7
( , ) ( / )n b O b n   under Conditions 

0 1( ), ( )A D  and 11( )B
 
Since, by the Conditioning 

Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
 

  

It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]
1 (1.4)
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TV b b

b
A
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bn

n

d L C b L Z b
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P T Z r

P T Z n r

P T Z n





 

  
 

 



 

  

Suppressing the argument Z  from now on, we thus 
obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
 

 

0
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[ ] 1
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b bn bn

s
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 
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 


 
[ /2]
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/2 0

[ ] [ ]
n
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P T r P T r
 

      

 [ /2]

0

0 0

[ /2]

0 0

0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b

s n

n n

b bn n

s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n



  

    
 



     



 

 The first sum is at most 
1

02 ;bn ET
the third is 

bound by 

 

0 0
/2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n P





 
 


  

 

 

[ /2] [ /2]
2

0 010.8
0 0

10.8 0

3 1
4 ( ) [ ] [ ]

[0,1] 2

12 ( )

[0,1]

n n
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r s

b

n
n n P T r P T s r s

P

n ET
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








 

 



  



 

  

Hence we may take 

 

 

 

10.81

07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6
( / 2, ) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
P
















  

  
  



  

 

Required order under Conditions 0 1( ), ( )A D  and 

11( ),B  if ( ) .S    If not,    10.8
n

 can be 
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replaced by 
   10.11

n
in the above, which has the 

required order, without the restriction on the ir  

implied by ( )S   . Examining the Conditions  

0 1( ), ( )A D  and 11( ),B it is perhaps surprising to 

find that 11( )B  is required instead of just 01( );B  

that is, that we should need 1

2
( )

a

ill
l O i 


   to 

hold for some 1 1a  . A first observation is that a 

similar problem arises with the rate of decay of 1i  

as well. For this reason, 1n  is replaced by 1n


. This 

makes it possible to replace condition 1( )A  by the 

weaker pair of conditions 0( )A and 1( )D in the 

eventual assumptions needed for 
   7,7

,n b  to be 

of order ( / );O b n   the decay rate requirement of 

order 
1i  

 is shifted from 1i  itself to its first 

difference. This is needed to obtain the right 
approximation error for the random mappings 

example. However, since all the classical 

applications make far more stringent assumptions 

about the 1, 2,i l   than are made in 11( )B . The 

critical point of the proof is seen where the initial 

estimate of the difference
( ) ( )[ ] [ 1]m m

bn bnP T s P T s    . The factor 

 10.10
( ),n  which should be small, contains a far 

tail element from 1n


 of the form 1 1( ) ( ),n u n   

which is only small if 1 1,a   being otherwise of 

order 11( )aO n  
 for any 0,   since 2 1a   is in 

any case assumed. For / 2,s n  this gives rise to a 

contribution of order  11( )aO n   
 in the estimate 

of the difference [ ] [ 1],bn bnP T s P T s     

which, in the remainder of the proof, is translated 

into a contribution of order 11( )aO tn   
for 

differences of the form 

[ ] [ 1],bn bnP T s P T s     finally leading to a 

contribution of order 1abn  
 for any 0   in 

 7.7
( , ).n b  Some improvement would seem to be 

possible, defining the function g  by 

   ( ) 1 1 ,
w s w s t

g w
  

    differences that are of 

the form [ ] [ ]bn bnP T s P T s t     can be 

directly estimated, at a cost of only a single 

contribution of the form 1 1( ) ( ).n u n   Then, 

iterating the cycle, in which one estimate of a 

difference in point probabilities is improved to an 

estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a

bn bnP T s P T s t O n t n        

 for any 0   could perhaps be attained, leading to 

a final error estimate in order  11( )aO bn n    for 

any 0  , to replace 
 7.7

( , ).n b  This would be 

of the ideal order ( / )O b n for large enough ,b  but 

would still be coarser for small .b   

 

 

With b and n  as in the previous section, we wish to 

show that  

 

1

0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1

2

( , ),

TV b bd L C b L Z b n E T ET

n b





   



  

Where 
 

121 1

7.8
( , ) ( [ ])n b O n b n b n        for 

any 0   under Conditions 0 1( ), ( )A D  and 

12( ),B with 12 . The proof uses sharper estimates. 

As before, we begin with the formula  

 

0
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Now we observe that  
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We have   
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The approximation in (1.2) is further simplified by 

noting that  
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and then by observing that  

. 

 

0 0

[ /2] 0

1

0 0 0 0

2 2

0

( )(1 )
[ ] [ ]

1

1 ( [ / 2] ( 1 / 2 ))

4 1 (1.4)

b b

r n s

b b b b

b

s r
P T r P T s

n

n ET P T n E T T n

n ET







 





  
  

 

    

 

 

 

 

Combining the contributions of (1.2) –(1.3), we thus 

find tha
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The quantity  7.8
( , )n b is seen to be of 

the order claimed under Conditions 0 1( ), ( )A D  and 

12( )B , provided that ( ) ;S     this 

supplementary condition can be removed if 

 10.8
( )n

 is replaced by 
 10.11

( )n
   in the 

definition of  7.8
( , )n b , has the required order 

without the restriction on the ir  implied by assuming 

that ( ) .S   Finally, a direct calculation now 

shows that 

0 0

0 0

0 0

[ ] [ ]( )(1 )

1
1
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b b

r s

b b

P T r P T s s r

E T ET





  
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 

  

 

 
 

Example 1.0.  Consider the point 

(0,...,0) nO   . For an arbitrary vector r , the 

coordinates of the point x O r   are equal to the 

respective coordinates of the vector 
1: ( ,... )nr x x x  and 

1( ,..., )nr x x . The vector 

r such as in the example is called the position vector 

or the radius vector of the point x  . (Or, in greater 

detail: r  is the radius-vector of x  w.r.t an origin 

O). Points are frequently specified by their radius-

vectors. This presupposes the choice of O as the 

“standard origin”.   Let us summarize. We have 

considered 
n  and interpreted its elements in two 

ways: as points and as vectors. Hence we may say 

that we leading with the two copies of  :n  
n = 

{points},      
n = {vectors}  

Operations with vectors: multiplication by a 

number, addition. Operations with points and 

vectors: adding a vector to a point (giving a point), 

subtracting two points (giving a vector). 
n treated 

in this way is called an n-dimensional affine space. 

(An “abstract” affine space is a pair of sets , the set 
of points and the set of vectors so that the operations 

as above are defined axiomatically). Notice that 
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vectors in an affine space are also known as “free 

vectors”. Intuitively, they are not fixed at points and 

“float freely” in space. From 
n considered as an 

affine space we can precede in two opposite 

directions: 
n  as an Euclidean space  

n as an 

affine space  
n as a manifold.Going to the left 

means introducing some extra structure which will 

make the geometry richer. Going to the right means 

forgetting about part of the affine structure; going 

further in this direction will lead us to the so-called 
“smooth (or differentiable) manifolds”. The theory 

of differential forms does not require any extra 

geometry. So our natural direction is to the right. 

The Euclidean structure, however, is useful for 

examples and applications. So let us say a few words 

about it: 

 

Remark 1.0.  Euclidean geometry.  In 
n  

considered as an affine space we can already do a 

good deal of geometry. For example, we can 

consider lines and planes, and quadric surfaces like 

an ellipsoid. However, we cannot discuss such 
things as “lengths”, “angles” or “areas” and 

“volumes”. To be able to do so, we have to introduce 

some more definitions, making 
n a Euclidean 

space. Namely, we define the length of a vector 
1( ,..., )na a a  to be  

1 2 2: ( ) ... ( ) (1)na a a     

After that we can also define distances between 

points as follows: 

 

( , ) : (2)d A B AB


  

 

One can check that the distance so defined 
possesses natural properties that we expect: is it 

always non-negative and equals zero only for 

coinciding points; the distance from A to B is the 

same as that from B to A (symmetry); also, for three 

points, A, B and C, we have 

( , ) ( , ) ( , )d A B d A C d C B   (the “triangle 

inequality”). To define angles, we first introduce the 

scalar product of two vectors 

 

 
1 1( , ) : ... (3)n na b a b a b     

 

Thus ( , )a a a  . The scalar product is also 

denote by dot: . ( , )a b a b , and hence is often 

referred to as the “dot product” . Now, for nonzero 

vectors, we define the angle between them by the 
equality 

( , )
cos : (4)

a b

a b
    

The angle itself is defined up to an integral multiple 

of 2  . For this definition to be consistent we have 

to ensure that the r.h.s. of (4) does not exceed 1 by 

the absolute value. This follows from the inequality 
2 22( , ) (5)a b a b   

known as the Cauchy–Bunyakovsky–

Schwarz inequality (various combinations of these 

three names are applied in different books). One of 

the ways of proving (5) is to consider the scalar 

square of the linear combination ,a tb  where 

t R . As  ( , ) 0a tb a tb    is a quadratic 

polynomial in t  which is never negative, its 

discriminant must be less or equal zero. Writing this 

explicitly yields (5). The triangle inequality for 

distances also follows from the inequality (5). 

 

Example 1.1.    Consider the function ( ) if x x  

(the i-th coordinate). The linear function 
idx  (the 

differential of 
ix  ) applied to an arbitrary vector h  

is simply 
ih .From these examples follows that we 

can rewrite df  as 

1

1
... , (1)n

n

f f
df dx dx

x x

 
  
 

  

which is the standard form. Once again: the partial 

derivatives in (1) are just the coefficients (depending 

on x ); 
1 2, ,...dx dx  are linear functions giving on 

an arbitrary vector h  its coordinates 
1 2, ,...,h h  

respectively. Hence 

  

1

( ) 1
( )( )

... , (2)

hf x

n

n

f
df x h h

x

f
h

x


   







 

 

Theorem   1.7.     Suppose we have a parametrized 

curve ( )t x t  passing through 0

nx   at 

0t t  and with the velocity vector 0( )x t   Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt
   

  

 

Proof.  Indeed, consider a small increment of the 

parameter 0 0:t t t t  , Where 0t  . On 

the other hand, we have  

0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h      for 

an arbitrary vector h , where ( ) 0h   when

0h  . Combining it together, for the increment 

of ( ( ))f x t   we obtain 
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0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

 

    

 

  

    

        

    

     

For a certain ( )t   such that ( ) 0t   when 

0t   (we used the linearity of 0( )df x ). By the 

definition, this means that the derivative of 

( ( ))f x t  at 0t t  is exactly 0( )( )df x  . The 

statement of the theorem can be expressed by a 

simple formula: 

1

1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

 
  
 

  

 

To calculate the value Of df  at a point 0x  

on a given vector   one can take an arbitrary curve 

passing Through 0x  at 0t  with   as the velocity 

vector at 0t and calculate the usual derivative of 

( ( ))f x t  at 0t t . 

 

Theorem 1.8.  For functions , :f g U   ,

,nU     

 
( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

  

 
   

 

Proof. Consider an arbitrary point 0x  and an 

arbitrary vector   stretching from it. Let a curve 

( )x t  be such that 0 0( )x t x  and 0( )x t  .  

Hence 

0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt

     

at 0t t  and  

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

    

at 0t t  Formulae (1) and (2) then immediately 

follow from the corresponding formulae for the 

usual derivative Now, almost without change the 

theory generalizes to functions taking values in  
m  

instead of  . The only difference is that now the 

differential of a map : mF U    at a point x  

will be a linear function taking vectors in 
n  to 

vectors in 
m (instead of  ) . For an arbitrary 

vector | ,nh    

 

( ) ( ) ( )( )F x h F x dF x h     

+ ( ) (3)h h   

Where ( ) 0h    when  0h . We have  

1( ,..., )mdF dF dF  and  

1

1

1 1

11

1

...

....

... ... ... ... (4)

...

n

n

n

nm m

n

F F
dF dx dx

x x

F F

dxx x

dxF F

x x

 
  
 

  
     

   
      
 
  

  

 

In this matrix notation we have to write vectors as 
vector-columns. 

 

Theorem 1.9. For an arbitrary parametrized curve 

( )x t  in 
n , the differential of a   map 

: mF U    (where 
nU   ) maps the velocity 

vector ( )x t  to the velocity vector of the curve 

( ( ))F x t  in :m   

.( ( ))
( ( ))( ( )) (1)

dF x t
dF x t x t

dt
     

 

Proof.  By the definition of the velocity vector, 
.

( ) ( ) ( ). ( ) (2)x t t x t x t t t t      

  

Where ( ) 0t    when 0t  . By the 

definition of the differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h   

  

Where ( ) 0h   when 0h . we obtain  

.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

 

For some ( ) 0t    when 0t  . This 

precisely means that 
.

( ) ( )dF x x t  is the velocity 

vector of ( )F x . As every vector attached to a point 

can be viewed as the velocity vector of some curve 
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passing through this point, this theorem gives a clear 

geometric picture of dF  as a linear map on vectors. 

   

Theorem 1.10 Suppose we have two maps 

:F U V  and : ,G V W  where 

, ,n m pU V W      (open domains). Let 

: ( )F x y F x . Then the differential of the 

composite map :GoF U W  is the composition 

of the differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x   

 

Proof.   We can use the description of the 

differential .Consider a curve ( )x t  in 
n  with the 

velocity vector 
.

x . Basically, we need to know to 

which vector in  
p it is taken by ( )d GoF . the 

curve ( )( ( ) ( ( ( ))GoF x t G F x t . By the same 

theorem, it equals the image under dG  of the 

Anycast Flow vector to the curve ( ( ))F x t  in 
m . 

Applying the theorem once again, we see that the 

velocity vector to the curve ( ( ))F x t is the image 

under dF of the vector 
.

( )x t . Hence 

. .

( )( ) ( ( ))d GoF x dG dF x   for an arbitrary 

vector 
.

x  . 

 

Corollary 1.0.    If we denote coordinates in 
n by 

1( ,..., )nx x  and in 
m by 

1( ,..., )my y , and write 

1

1

1

1

... (1)

... , (2)

n

n

n

n

F F
dF dx dx

x x

G G
dG dy dy

y y

 
  
 

 
  
 

  

Then the chain rule can be expressed as follows: 

1

1
( ) ... , (3)m

m

G G
d GoF dF dF

y y

 
  
 

  

Where 
idF  are taken from (1). In other words, to 

get ( )d GoF  we have to substitute into (2) the 

expression for 
i idy dF  from (3). This can also 

be expressed by the following matrix formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F

dxy y x x

d GoF

dxG G F F

y y x x

     
         
    
          

       

 

 

i.e., if dG  and dF  are expressed by matrices of 

partial derivatives, then ( )d GoF  is expressed by 

the product of these matrices. This is often written as  

 

1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z

y yx x

z z z z

x x y y

y y

x x

y y

x x

    
        
  
  

     
         

  
 
  

 
 
  

 
  

 

Or 

1

, (6)
im

a i a
i

z z y

x y x

 



  


  
   

Where it is assumed that the dependence of 
my  

on 
nx  is given by the map F , the dependence 

of 
pz  on 

my  is given by the map ,G  

and the dependence of  
pz on 

nx is given 

by the composition GoF .  

 

Definition 1.6.  Consider an open domain 
nU   . 

Consider also another copy of 
n , denoted for 

distinction 
n

y , with the standard coordinates 

1( ... )ny y . A system of coordinates in the open 

domain U  is given by a map : ,F V U  where 

n

yV    is an open domain of 
n

y , such that the 

following three conditions are satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 
1 :F U V   is also smooth 

 

The coordinates of a point x U  in this system are 

the standard coordinates of 
1( ) n

yF x   

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y

  

Here the variables 
1( ..., )ny y  are the “new” 

coordinates of the point x   

 

Example  1.2.     Consider a curve in 
2  specified 

in polar coordinates as  
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( ) : ( ), ( ) (1)x t r r t t     

We can simply use the chain rule. The map 

( )t x t  can be considered as the composition of 

the maps  ( ( ), ( )), ( , ) ( , )t r t t r x r    . 

Then, by the chain rule, we have  
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r




 

   
    

   
   

Here 
.

r  and 
.

  are scalar coefficients depending on 

t , whence the partial derivatives ,x x
r 

 
 

  are 

vectors depending on point in 
2 . We can compare 

this with the formula in the “standard” coordinates: 
. . .

1 2x e x e y  . Consider the vectors   

,x x
r 

 
 

. Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r

x
r r

 

 








 



  

From where it follows that these vectors make a 

basis at all points except for the origin (where 

0r  ). It is instructive to sketch a picture, drawing 

vectors corresponding to a point as starting from that 

point. Notice that  ,x x
r 

 
 

 are, respectively, 

the velocity vectors for the curves ( , )r x r    

0( )fixed   and 

0( , ) ( )x r r r fixed   . We can conclude 

that for an arbitrary curve given in polar coordinates 

the velocity vector will have components 
. .

( , )r   if 

as a basis we take : , : :r
x xe e

r  
  
 

  

. . .

(5)rx e r e      

A characteristic feature of the basis ,re e  is that it 

is not “constant” but depends on point. Vectors 

“stuck to points” when we consider curvilinear 

coordinates. 

 

Proposition  1.3.   The velocity vector has the same 
appearance in all coordinate systems. 

Proof.        Follows directly from the chain rule and 

the transformation law for the basis ie .In particular, 

the elements of the basis ii
xe

x



 (originally, a 

formal notation) can be understood directly as the 
velocity vectors of the coordinate lines 

1( ,..., )i nx x x x   (all coordinates but 
ix  are 

fixed). Since we now know how to handle velocities 
in arbitrary coordinates, the best way to treat the 

differential of a map : n mF    is by its action 

on the velocity vectors. By definition, we set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt


  

Now 0( )dF x  is a linear map that takes vectors 

attached to a point 0

nx   to vectors attached to 

the point ( ) mF x    

1

1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n

n

n

m

nm m

n

F F
dF dx dx

x x

F F

dxx x

e e

dxF F

x x

 
  
 

  
     
  
      
 
  

  

In particular, for the differential of a function we 

always have  

1

1
... , (3)n

n

f f
df dx dx

x x

 
  
 

  

Where 
ix  are arbitrary coordinates. The form of the 

differential does not change when we perform a 

change of coordinates. 

 

Example  1.3   Consider a 1-form in 
2  given in 

the standard coordinates: 

 

A ydx xdy     In the polar coordinates we will 

have cos , sinx r y r   , hence 

cos sin

sin cos

dx dr r d

dy dr r d

  

  

 

 
  

Substituting into A , we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

   

   

   

  

 

  

  

Hence  
2A r d  is the formula for A  in the 

polar coordinates. In particular, we see that this is 

again a 1-form, a linear combination of the 

differentials of coordinates with functions as 

coefficients. Secondly, in a more conceptual way, 

we can define a 1-form in a domain U  as a linear 

function on vectors at every point of U : 
1

1( ) ... , (1)n

n         
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If 
i

ie  , where ii
xe

x



. Recall that the 

differentials of functions were defined as linear 

functions on vectors (at every point), and  

( ) (2)i i i

j jj

x
dx e dx

x


 
  

 
    at 

every point x .  

 

Theorem  1.9.   For arbitrary 1-form   and path 

, the integral 



  does not change if we change 

parametrization of   provide the orientation 

remains the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt

  and  

'

'
( ( ( ))),

dx
x t t

dt
  As 

'

'
( ( ( ))),

dx
x t t

dt
 =

'

' '
( ( ( ))), . ,

dx dt
x t t

dt dt
   

 

Let p  be a rational prime and let 

( ).pK    We write   for p  or this section. 

Recall that K  has degree ( ) 1p p    over .  

We wish to show that  .KO    Note that   is 

a root of 1,px   and thus is an algebraic integer; 

since K  is a ring we have that   .KO   We 

give a proof without assuming unique factorization 

of ideals. We begin with some norm and trace 

computations. Let j  be an integer. If j is not 

divisible by ,p  then 
j  is a primitive 

thp  root of 

unity, and thus its conjugates are 
2 1, ,..., .p   

 

Therefore 

 
2 1

/ ( ) ... ( ) 1 1j p

K pTr               

If p  does divide ,j  then 1,j   so it has only 

the one conjugate 1, and  / ( ) 1j

KTr p    By 

linearity of the trace, we find that  
2

/ /

1

/

(1 ) (1 ) ...

(1 )

K K

p

K

Tr Tr

Tr p

 

 

   

  

 



 

We also need to compute the norm of 1  . For 

this, we use the factorization  

 

1 2

2 1

... 1 ( )

( )( )...( );

p p

p

p

x x x

x x x  

 



    

   
  

Plugging in 1x   shows that  

 
2 1(1 )(1 )...(1 )pp          

Since the (1 )j  are the conjugates of (1 ),

this shows that  / (1 )KN p   The key result 

for determining the ring of integers KO  is the 

following. 
 

LEMMA 1.9 

  (1 ) KO p      

Proof.  We saw above that p  is a multiple of 

(1 )  in ,KO  so the inclusion 

(1 ) KO p   
 
is immediate.  Suppose 

now that the inclusion is strict. Since 

(1 ) KO  is an ideal of   containing p  

and p is a maximal ideal of  , we must have  

(1 ) KO   
 
Thus we can write 

 1 (1 )     

For some .KO   That is, 1   is a unit in .KO   

 

COROLLARY 1.1   For any ,KO   

/ ((1 ) ) .KTr p      

PROOF.       We have  

 

/ 1 1

1 1 1 1

1

1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p

p

Tr        

       

     



 





     

    

    



 

Where the i  are the complex embeddings 

of K  (which we are really viewing as 

automorphisms of K ) with the usual ordering.  

Furthermore, 1
j  is a multiple of 1   in KO  

for every 0.j   Thus 

/ ( (1 )) (1 )K KTr O      
Since the trace is 

also a rational integer. 

 

PROPOSITION 1.4  Let p  be a prime number and 

let | ( )pK    be the 
thp  cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x x     Thus 

21, ,..., p

p p  
 is an integral basis for KO . 

PROOF.    Let   KO   and write 

2

0 1 2... p

pa a a   

      With .ia   

Then 
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2 1

2

(1 ) (1 ) ( ) ...

( )p p

p

a a

a

    

  



     

 
  

By the linearity of the trace and our above 

calculations we find that  / 0( (1 ))KTr pa    

We also have  

/ ( (1 )) ,KTr p    so 0a    Next consider 

the algebraic integer  
1 3

0 1 2 2( ) ... ;p

pa a a a    

      This is 

an algebraic integer since 
1 1p    is. The same 

argument as above shows that 1 ,a   and 

continuing in this way we find that all of the ia  are 

in  . This completes the proof. 
  

Example 1.4   Let K   , then the local 

ring ( )p  is simply the subring of   of rational 

numbers with denominator relatively prime to p . 

Note that this ring   ( )p is not the ring p of p -

adic integers; to get  p one must complete ( )p . 

The usefulness of ,K pO  comes from the fact that it 

has a particularly simple ideal structure. Let a be 

any proper ideal of ,K pO  and consider the ideal 

Ka O  of .KO  We claim that 

,( ) ;K K pa a O O     That is, that a  is generated 

by the elements of a  in .Ka O  It is clear from 

the definition of an ideal that ,( ) .K K pa a O O   

To prove the other inclusion, let   be any element 

of a . Then we can write /    where 

KO   and .p   In particular, a   (since 

/ a    and a  is an ideal), so KO   and 

.p   so .Ka O    Since ,1/ ,K pO   this 

implies that ,/ ( ) ,K K pa O O      as 

claimed.We can use this fact to determine all of the 

ideals of , .K pO  Let a  be any ideal of ,K pO and 

consider the ideal factorization of Ka O in .KO  

write it as 
n

Ka O p b   For some n  and some 

ideal ,b  relatively prime to .p  we claim first that 

, , .K p K pbO O  We now find that 

  , , ,( ) n n

K K p K p K pa a O O p bO p O      

Since , .K pbO  Thus every ideal of ,K pO  has the 

form ,

n

K pp O  for some ;n  it follows immediately 

that ,K pO is noetherian. It is also now clear that 

,

n

K pp O is the unique non-zero prime ideal in ,K pO . 

Furthermore, the inclusion , ,/K K p K pO O pO  

Since , ,K p KpO O p   this map is also 

surjection, since the residue class of ,/ K pO    

(with KO   and p  ) is the image of 
1 

 

in / ,K pO  which makes sense since   is invertible 

in / .K pO  Thus the map is an isomorphism. In 

particular, it is now abundantly clear that every non-

zero prime ideal of ,K pO is maximal.  To 

show that ,K pO is a Dedekind domain, it remains to 

show that it is integrally closed in K . So let K   

be a root of a polynomial with coefficients in  

, ;K pO  write this polynomial as  

11 0

1 0

...m mm

m

x x
 

 





    With i KO   and 

.i K pO   Set 0 1 1... .m      Multiplying by 

m  we find that   is the root of a monic 

polynomial with coefficients in .KO  Thus 

;KO   since ,p   we have 

,/ K pO    . Thus  ,K pO is integrally close 

in .K   

 

COROLLARY 1.2.   Let K  be a number field of 

degree n  and let   be in KO  then 

'

/ /( ) ( )K K KN O N     

PROOF.  We assume a bit more Galois theory than 

usual for this proof. Assume first that /K   is 

Galois. Let   be an element of ( / ).Gal K   It is 

clear that /( ) / ( ) ;K KO O      since 

( ) ,K KO O   this shows that 

' '

/ /( ( ) ) ( )K K K KN O N O    . Taking the 

product over all ( / ),Gal K    we have 

' '

/ / /( ( ) ) ( )n

K K K K KN N O N O     Since 

/ ( )KN   is a rational integer and KO  is a free -

module of rank ,n    

// ( )K K KO N O   Will have order / ( ) ;n

KN   

therefore 

 
'

/ / /( ( ) ) ( )n

K K K K KN N O N O     
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This completes the proof.  In the general case, let L  

be the Galois closure of K  and set [ : ] .L K m   

 

V. CONCLUSION 
Many of the early challenges faced with the 

use of intravascular OCT in the clinical setting were 

overcome with the development of OFDI, the most 

significant being imaging speed. While the laser and 

detection electronics are capable of operating faster 

still, the ability of acquisition electronics and data 

processing to keep pace, remains a challenge. 

Recently however, newer acquisition electronic 

systems have been developed enabling the 

acquisition and storage of data at rates approaching 1 

GB/s. Additionally, solutions to alleviate CPU 
processing requirements have been implemented, 

using hardware components, such as digital signal 

processors (DSPs) [99] and field programmable gate 

arrays (FPGAs) [100]. These hardware solutions 

may be integrated into OFDI systems to handle 

much of the pre and postacquisition processing, thus 

enabling both real-time display and an increase in 

the data transfer rates achievable [99]–[102]. Bit-

depth reduction with aminimal associated loss in the 

signalto- noise ratio of the OCT images, may also 

result in an increase in image acquisition rates due to 
the reduced bandwidth and storage requirements at 

lower bit-depths [80], [103] Coupled with the 

rapidly increasing use of intravascular OCT in 

catheterization laboratories, is a pressing need for 

automated and semiautomated image processing 

techniques for the evaluation of coronary features 

including classification based on tissue pathology, 

stent strut identification and quantification of strut 

tissue coverage. To date the vast majority of this 

type of evaluation is manually performed by expert 

intracoronary OCT readers. This process involves an 
extremely large time commitment and is subject to 

interobserver variations. In the case of quantitative 

feature analyses, such as stent strut coverage or 

lumen diameter analysis, well-defined and validated 

protocols are required in addition to controlled 

image processing steps to account for variances in 

the refractive indexes of both the tissue and flushing 

media. While preliminary studies have been 

conducted describing semiautomated analyses of 

OCT image data [104], the development of 

appropriate automated and semiautomated image 

analysis tools could improve the ease of use of 
intravascular OCT, particularly in nonspecialized 

catheterization centers that may have little or no 

intravascular OCT expertise. With the evolution of 

OFDI and PS-OFDI, there is also an increasing need 

for improved visual display techniques that can 

highlight relevant features, provide an enhanced 

appreciation of the 3-D morphology, and can 

amalgamate the complementary information into 

user-friendly maneuverable 3-D displays. In order to 

fully appreciate the complex 3-D morphology of the 

artery, investigators are exploring various display 

techniques ranging from standard longitudinal and 

transverse cross-sectional displays to intensity-based 

volume rendering, and more complex methods 

involving segmentation and pseudocoloring based 

on tissue characterization with subsequent 3-D 

volume rendering [87]. While preliminary work has 
been demonstrated by some investigators in the 

manipulation, analysis, and display of intravascular 

OCT datasets, further work in this field is needed, 

which may be leveraged from the extensive research 

performed with other imaging modalities, such as 

IVUS [105], [106] The potential clinical utility of 

intravascular OCT has no doubt increased as a direct 

result of the development of highspeed OFDI 

technology. OFDI enables imaging of long coronary 

segments, previously difficult with the first 

generation TD-OCT, during a brief flush with an 

optically transparent media. Based on the status of 
currently available imaging modalities for 

interrogating the coronary arteries, intravascular 

OCT is uniquely situated to play a critical role in 

improving our understanding of the vulnerable 

plaque, in addition to possibly guiding patient 

management and monitoring the response to PCI. 
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